
Proposal for a Unified “Flux” N-tuple Format.

Robert Hatcher
FNAL/CD

October 2, 2012

1 Statement of Purpose

The fnal neutrino experiments (minos, minerνa, noνa, ArgoNeut, MicroBooNe, lbne) all have
similar needs for simulations of the beamlines. Each of the NuMI, Booster and LBNE beamlines
send protons into their respective targets, producing secondaries that decay to neutrinos; by keeping
sufficient information those decays can be re-evaluated for different detector locations by event
generators such as genie.

Various groups have used different tools to model the physics and geometry of the beamlines.
These include combinations of geant3, geant4 and fluka. Unfortunately, over time, these sim-
ulations have come to have incompatible variants in the structure of their outputs. Some of these
differences include a change of basic types, capitalization of the leaf element names, changes in array
sizes, and additions of variables. This makes it more difficult for the different groups to make com-
parisons and to use common tools. genie’s flux interface GNuMIFlux must support all the variants.
This gets more difficult as individual, incompatible twists are introduced.

I am proposing that a single new format be defined and that all beamline simulations be modified
to fill that format. The new structure should be an intelligent union of all the core parts and
individual extensions. If a particular simulation doesn’t generate or wish to store a non-essential
element then they would flag it as unfilled. Additionally provisions would be made to use c++
stl vectors rather than fixed array sizes to allow for more flexibility and less waste. A scheme for
proprietary (temporary) extensions should also be designed in to allow open-ended studies without
the need for significant code changes. Below, I attempt to identify existing Branches in the various
TTrees and show their existing status and the new proposal.

It would also be useful to introduce a mechanism to record in the file some metadata that applies
to the file as a whole. This includes total protons-on-target (rather than trying to infer it from the
range of evtno); the actual detector locations used for “near” and “far”; and statements about the
tools used to generate the file (e.g. flugg, geant4, etc. and build version).

This might also be a good time to rename the genie GNuMIFlux class to avoid prejudice against
Booster and LBNE beam simulations; a typedef could be used to retain backward compatibility.
The GNuMIFluxPassThroughInfo class would migrate to be identical in form to this new layout and
undergo a renaming.

Thanks to Alex Himmel for producing MINOS-DocDB-6316 from whence I stole a lot of tables
to serve as a starting point for this document.

2 Primary Ntuple

2.1 general characterisics

The primary ntuple holds entries representing decays that produced neutrinos with one entry for
every neutrino recorded (generally with some importance weight). It is possible for the same initial
proton to produce more than one entry (i.e. the same evtno might appear more than once).

The minerνa variant of the g4numi layout appears to only add new branch elements which are
discussed in Table 7.

1

simulation base program(s) tree name capitalization char limit

gnumi geant3 h10 first char, sometimes 8 char
flugg fluka + geant4 h10 follows gnumi 8 char
g4numi geant4 nudata studly, e.g. NdxdzNear none
lbne geant4 nudata follows g4numi none

— — all —
dk2nu
dkmeta

all lower case none

Table 1: General properties of the ntuples.

At this time the format of any given ntuple file must be guessed from a combination of the file
and tree names. By choosing a new unique tree name (e.g. dk2nu) for the new TTree format it
can be easily identified; alternative suggestions for this name are welcome. I propose that branch
element names for the new format are entirely lower case for ease of rememberence and typing.
Also no artificial name cutoffs should be imposed (i.e. ndxdznear rather than NdxdzNea). 2¡ Each
sub-section below tabulates a number of branch elements, gives their type for each TTree variant
and a general description. These are grouped only for convenience and it is the aggregate that makes
up the TTree structure.

Notes:

1. ẑ is beam direction, centerline axis

2. energy & momentum are in GeV [allow to flag for MeV with flagbits? ‡]

3. distances in cm [allow to flag flag for m or mm with flagbits? ‡]

4. particle codes Geant3 [change default to PDG, flag old with flagbits? ‡]

5. branch types: I=integer; F=float; D=double; TS=TString; s=stl string

6. [n] = fixed size array; <>= STL vector

7. if type is ? then either type conflict or unknown whether final ntuple needs this element

8. † required for POT calculation

9. § required for weighting (e.g. relocation calculation of “x-y weight”)

2.2 general entry info

Table 2 details some basic elements. The run branch is repetitive within a file but useful to distin-
guishing entries when the TTrees are chained together. Prior to the addition of any metadata to
the file, the range of evtno values was used make a calculated guess at the total protons-on-target
(POTs) the file represents. Because not every proton generates an entry in the TTree and because
for some formats in some cases the proton number was lost (e.g. muon decays in flugg) one can not
simply use the difference in the first and last entries.

Variable g3 flugg g4 lbne new Description

run I I I I - Run number (arbitrary)

job - - - - I
Job number (arbitrary), replaces “run” to
avoid “run period” confusion

evtno † I I I I - Event number (proton on target)

potnum † - - - - I proton on target number

Table 2: General entry information.

2

2.3 fixed decays

Table 3 represents the results of decays where the neutrino ray direction is either chosen randomly or
forced through a particular point. The random decay is just that: whatever geant4 (or whatever)
generated. The other tuples are calculated by limiting the ray to going through a given point. This
choice will affect the neutrino’s energy and direction and will have an associated weight (probability).

For a “far” detector far enough away that subtends a small enough solid angle the choice of a
single point is relatively insignificant as the beam is essentially a parallel plane wave front. But this
is not true for any sizable “near” detector which will see a line source rather than a point source and
thus is subject to variation in energy spectra and intensity throughout its volume. Thus the “near”
values can not be used as-is in event generators such as genie if they are to represent a detailed
simulation. They are adequate for some crude purposes to get a general feel for different locations.

One could condense this section down to simple vectors of ndxdz, ndydz, npz, nenergy, nwt

where element [0] would represent the random decay (nwt=1), and subsequent elements hold some
mixture of various “near” and “far” locations. This is something to consider; for now I’ve left the
three cases as separate elements. Currently files lack any metadata that tells one what location
a “near” or “far” entry represents. For instance flugg files might have minos or noνa locations
used depending on who generated the file; this has led to surprises for the unwary and additional
headaches when trying to rectify the differences seen by people running essentially the same code.

Variable g3 flugg g4 lbne new Description

Ndxdz

Ndydz
F D D F - ν direction slopes for a random decay

Npz F D D F -
ν momentum (GeV/c) along the z-axis
(beam axis) for a random decay

Nenergy F D D F - ν energy (GeV) for a random decay

NdxdzNear

NdydzNear
F D D[11] F[5] -

Direction slopes for a ν forced towards the
center of the “near” detector(s)

NenergyN F D D[11] F[5] -
Energy for a ν forced towards the center
of the “near” detector(s)

NWtNear F D D[11] F[5] -
Weight for a ν forced towards the center
of the “near” detector(s)

NdxdzFar

NdxdzFar
F D D[2] F[3] -

Direction slopes for a ν forced towards the
center of the “far” detector(s)

NenergyF F D D[2] F[3] -
ν energy (GeV) for a decay forced to the
center of the “far” detector(s)

NWtFar F D D[2] F[3] -
ν weight for a decay forced to the center
of the far detector(s)

nupx

nupy

nupz

- - - - <D> ν momentum components for locations

nuenergy

nuwgt
- - - - <D> ν energy and weight for locations

Table 3: Limited neutrino ray information.

3

2.4 decay data

Table 4 is (mostly) the core information about the neutrino and the decay that gave rise to it. From
the information marked with a § one can calculate the energy and weight for the neutrino ray to go
through any point (small angles assumed??).

Variable g3 flugg g4 lbne new Description

Norig I I I I I
neutrino origin: g4numi: 1=particle from
target (or baffle), 2=from scraping, 3=from
µ decay (Not filled in flugg)

Ndecay ¶ I I I I I
Decay process that produced the ν, see
Table 11

Ntype § I I I I I
ν flavor. ‡GEANT codes:
νµ = 56, ν̄µ = 55, νe = 53, ν̄e = 52

Vx

Vy

Vz

§ F D D F D ν production vertex (cm)

pdPx

pdPy

pdPz

§ F D D F D
Momentum (GeV/c) of the ν parent at the
ν production vertex (parent decay point)

ppdxdz

ppdydz
§ F D D F D

Direction of the ν parent at its production
point (which may be in the target)

pppz § F D D F D
z momentum (GeV/c) of the ν parent at its
production point

ppenergy § F D D F D
Energy (GeV) of the ν parent at its
production point

ppmedium ¶ I I D F ?
Code for the material the ν parent was
produced in (see Table 11)

ptype § I I I I I ν parent species (GEANT codes‡)
ptrkid - - - I ? need lbne description

ppvx

ppvy

ppvz

F D D F D Production vertex (cm) of the ν parent

muparpx

muparpy

muparpz

§ F D D F D

Momentum (GeV/c) of the ν grandparent
at the grandparent decay point (muons) or
grandparent production point (hadrons) (at
the decay point in production files – see
footnote on page ??

mupare § F D D F D
Energy (GeV) of the ν grandparent, as
above

Necm § F D D F D ν energy (GeV) in the center-of-mass frame

Nimpwt § F D D D D Importance weight of the ν

Table 4: The core information about the decays.

2.5 parent data

Entries marked with a ¶ represent info (beyond §) that minos or noνa might use to in reweighting.
The beamHWidth through hornCurrent (and protonN) elements (found in the g4numi and

g4lbne layouts immediately after evtno) are presented here, out-of-order, because they seem re-
lated to others in this section. Most of those seem to be metadata (can anyone confirm this?) that
won’t vary from entry to entry. The flugg-only entries in Table 6 are derived values.

4

Variable g3 flugg g4 lbne new Description

xpoint

ypoint

zpoint

F D D F ? (Not filled in flugg, others?)

tvx

tvy

tvz

F D D F D
Position (cm) of the ν ancestor as it exits
target (possibly, but not necessarily, the
direct ν parent)

tpx

tpy

tpz

¶ F D D F D
Momentum (GeV/c) of the ancestor as it
exits target

tptype ¶ I I I I I
Species of the ancestor exiting the target
(GEANT codes‡)

tgen I I I I I
ν parent generation in cascade. 1 =
primary proton, 2 = particles produced by
proton interaction, 3 = particles from 2’s

tgptype I I - - ?
Species of the parent of the particle exiting
the target (GEANT codes‡)

tgppx

tqppy

tqppz

F D - - ?

Momentum (GeV/c) of the parent of the
particle exiting the target at the parent
production point (at the decay point in
production files – see footnote on page ??

tprivx

tprivy

tprivz

F D - - ?
Primary particle interaction vertex (not
used)

beamx

beamy

beamz

F D - - ? Primary proton origin (cm)

beampx

beampy

beampz

F D - - ? Primary proton momentum (GeV/c)

protonN - - - I ?
need lbne description of difference w/
evtno

beamHWidth

beamVWidth
- - D F ? need g4numi description

beamX

beamY
- - D F ? need g4numi description

protonX

protonY

protonZ

- - D F ? need g4numi description

protonPx

protonPy

protonPz

- - D F ? need g4numi description

nuTarZ - - D F ? need g4numi description

hornCurrent - - D F ? need g4numi description

Table 5: Miscellaneous information, mostly do to with some ancestors.

5

Variable g3 flugg g4 lbne new Description

Vr - D - - ?
√

(Vx2 + Vy2)

pdP - D - - ?
√

(pdPt2 + pdPz2)

pdPt - D - - ?
√

(pdPx2 + pdPy2)

ppp - D - - ?
√

(pppt2 + pppz2)

pppt - D - - ?
√

(ppdxdz2 + ppdydz2)× pppz

ppvr - D - - ?
filled with tvr calculation, should be:√

(ppvx2 + ppvy2)

muparp - D - - ?
√

(muparpt2 + muparpz2)

muparpt - D - - ?
√

(muparpx2 + muparpy2)

tvr - D - - ?
never filled! looks like typo stores
calculated value in ppvr, should be:√

(tvx2 + tvy2)

tp - D - - ?
√

(tpt2 + tpz2)

tpt - D - - ?
√

(tpx2 + tpy2)

Table 6: flugg helper variables.

6

2.6 ancestor data

Table 7 is primarily g4numi and minerνa’s additions. Leo/? should verify the descriptions. By
using stl vectors rather than fixed sized arrays we can eliminate the need for ntrajectory and
overflow. Most of these need tweaks to the name to identify them as being information about the
intermediate particles. Questions

• what do trackId and parentId represent? (trackId[n-1] = parentId[n] but is this just geant4
stack #?)

• Isn’t start*[n] = stop*[n-1] (empirically seems to be true) ?

• choice of TString vs. stl string? (are these actually filled?)

• is entry [0] the proton (empirically true)?

• is entry [ntrajectory-1] the neutrino (empirically true)?

• indications in code that some of these entries use mm and MeV as units, which is at odds with
the units for other variables

It would be nice to make the names a bit clearer that the represent the history between the
proton and the neutrino. Or the group of variables could get pushed into a sub-object with a name
such as ancestors.

Variable g4 mnv new Description

ntrajectory - I - Number of intermediate levels minerva check

overflow - B - Flag list as incomplete minerva check

pdg - I[10] - Intermediate’s particle type descriptive name?
trackId - I[10] <I> ? - ??? descriptive name? necessary?

parentId - I[10] <I> ? - ??? descriptive name? necessary?

startx

starty

startz

- D[10] <D>
??? Origin of intermediate descriptive name?
minerva difference w/ trk above

stopx

stopy

stopz

- D[10] <D>
??? End of intermediate descriptive name?
minerva check

startpx

startpy

startpz

- D[10] <D>
??? Momentum at origin of intermediate
descriptive name? minerva difference w/ trk

above
stoppx

stoppy

stoppz

- D[10] <D>
??? Momentum at end of intermediate descriptive
name? minerva check

pprodpx

pprodpy

pprodpz

- D[10] <D> ??? descriptive name? minerva check

proc - TS[10] <s> ??? process (at start or stop) descriptive name?
ivol - TS[10] <s> ??? initial volume descriptive name?

fvol - TS[10] <s> ??? final volume descriptive name?

Table 7: Information about intermediates between the proton and the decaying particle.

7

2.7 volume trajectory data

This group of variables provides crude tracking visualization by recording points where particles
crossed volume boundaries. It is not clear what triggers the recording of a point.

Variable g4 mnv new Description

trkx

trky

trkz

D[10] D[10] -
??? Position as (what?) particle crosses volume
boundary descriptive name? minerva check

trkpx

trkpy

trkpz

D[10] D[10] -
??? Momentum as (what?) particle crosses volume
boundary descriptive name? minerva check

Table 8: Information about positions in volume crossings.

2.8 proposed primary ntuple additions and metadata

Table 9 suggests some possible additions to the dk2nu tree. By providing stl vectors of integers
and doubles users can add data that they need, especially for temporary short term studies, without
having to change the basic format – which would affect all other users. The mapping from index
into the vector to meaning will necessarily be up to the user. For cases where every entry has the
same fixed mapping we would provide name vectors in the metadata to record that ordering. If the
sizes vary on an entry by entry basis then it is left to the user to keep it straight.

I am also proposing the addition of a flagbits branch. My initial thoughts on this were to allow
single bits to signal information. Some bits would be reserved for fixed purposes and and the rest
would be up for individual user designation. One idea here would be to reserve bits to flag choices for
units (currently these are expected to be cm for length, GeV for energy & momentum, but the user
might prefer meters or mm and MeV) and particle codes (currently expected to be geant3 with ν
extensions, but it would be nice to uniformly use pdg codes by default). While these suggested bits
would generally be of file-wide scope the additional cost of one integer per entry is minimal.

Variable new Description

vint <I> stl vector of integers, for users to fill as they please
vdbl <D> stl vector of doubles, for users to fill as they please

flagbits ‡ I
Flags to indicate units and particle numbering scheme; some bits
reserved for user designation

Table 9: Proposed additions for the primary ntuple (i.e. one entry per decay).

For the file-level metadata the proposal is that the object class be dkmeta. One could simply
put one such object into every generated file, but it might be better to make this a tree in parallel
with dk2nu which might facilitate chaining multiple files together and/or the concatenation of files.

8

Variable new Description

job I Identifying job # (replaces “run” to avoid “run period” confusion).
pots D Corresponding protons-on-target for the ntuple.

beamsim s
Name and version of program that generated file
(e.g. “g4numi/tag”).

physics s
Physics generator
(e.g. “fluka08” or “g4.9.4p01”).

physcuts s
Tracking cuts
(e.g. “threshold=0.1GeV”).

tgtcfg s
Target configuration
(e.g. “minos/epoch3/-10cm”).

horncfg s
Horn configuration
(e.g. “FHC/185A/LE/h1xoff=1mm”).

dkvolcfg s
Decay volume configuration
(e.g. “helium” or “vacuum”).

beam0x

beam0y
D Beam center position at start.

beam0z D Beam start z position.

beamhwidth

beamvwidth
D Beam horizontal and vertical widths.

beamdxdz

beamdydz
D Beam centerline slopes.

xloc

yloc

zloc

<D>
Position info for each of the locations
(beam system coordinates and units)

nameloc <s> Name strings for each of the locations

vintnames <s> stl vector of strings to hold names for vint elements.

vdblnames <s> stl vector of strings to hold names for vdbl elements.

Table 10: Proposed metadata elements (i.e. one entry per generated file).

9

3 Defining the TTree

The gnumi (geant3) ntuple is created using hbook as a column-wise (common block-based) ntuple.
The root version is generated by using h2root to convert it from the zebra file format. As
generation of new beamline simulations using this code is unlikely we will not further comment on
the necessary steps for converting to the new format (it would be difficult).

3.1 flugg

The flugg TTree is filled using the script numisoft/g4numi_flugg/root/fill_flux.C which reads
data from an ascii text file. The extra (“extended”) elements discussed in Table 6 are calculated
when creating the entry; they are also apparently partially kaput (it’s a technical term) due to a
cut-and-paste typo.

...

TFile *ft = new TFile(ftree,"recreate");

TTree *mtree = new TTree("h10","neutrino");

int run; mtree->Branch("run", &run, "run/I"); //1

int evtno; mtree->Branch("evtno", &evtno, "evtno/I"); //2

...

double Ndxdznea; mtree->Branch("Ndxdznea", &Ndxdznea, "Ndxdznea/D");//7

...

int events = 0;

while(!datafile.eof()) {

// read a line from the text file

datafile

>> run //1

>> evtno //2

...

>> beampz ; //62

...

mtree->Fill();

++events;

}

datafile.close();

mtree->Write();

ft->Close();

To make this work for the new file format basically involve changing the branch names, adding
new branches and changing the types for those that are fixed sized arrays, making them vectors.
Untested code follows:

#include <string>

#include <vector>

using namespace std;

...

int bufsiz = 32000; // best value?

int splitlvl = 99; // best value?

...

std::vector<double> ndxdznear;

mtree->Branch("ndxdznear","vector<double>", &ndxdznear, bufsiz, splitlvl);

ndxdznear.reserve(1); // we know there will always be only one value (flugg files)

// and we must reserve space to have somewhere to put the value

// (this is less intensive than clear/push_back pairs in the loop)

10

...

while(!datafile.eof()) {

// read a line from the text file

...

>> ndxdznear[0] // already reserved space, so we can set it

...

Alternatively, with a minor reworking of the code the script could be rewritten to use compiled
code and the actual structure. The would be the preferred route forward. The framework for this
upgrade can be found in Section 5.

An inspection of this script (numisoft/g4numi_flugg/root/fill_flux.C) turned up an error
that needs to be fixed and committed back to all repository instances. The error is an obvious
cut-and-paste typo:

if (extend) {

Vr = SumSq(Vx, Vy);

pdPt = SumSq(pdPx, pdPy);

pdP = SumSq(pdPt, pdPz);

pppt = SumSq(ppdxdz, ppdydz)*pppz;

ppp = SumSq(pppt, pppz);

ppvr = SumSq(ppvx, ppvy);

muparpt = SumSq(muparpx, muparpy);

muparp = SumSq(muparpt, muparpz);

ppvr = SumSq(tvx, tvy); // the left hand side of this assignment should be "tvr"

// and not a repeat of "ppvr"

tpt = SumSq(tpx, tpy);

tp = SumSq(tpt, tpz);

}

11

3.2 g4numi and variants

The g4numi TTree is filled in compiled code in numisoft/g4numi/src/NumiAnalysis.cc. The basic
TTree is simply the series of data_t class objects, and is booked and filled via:

NumiAnalysis::NumiAnalysis()

...

// individual entries in the tree are "data_t" objects

g4data = new data_t(); // this is a private data member

void NumiAnalysis::book()

...

nuNtuple = new TFile(nuNtupleFileName,"RECREATE","root ntuple");

tree = new TTree("nudata","g4numi Neutrino ntuple");

tree->Branch("data","data_t",&g4data,32000,1);

void NumiAnalysis::FillNeutrinoNtuple(const G4Track& ...

...

// set values in g4data

g4data->run = ...

...// loop for elements that are arrays

g4data->NdxdzNear[ii] = ...

...

tree->Fill();

void NumiAnalysis::finish()

...

nuNtuple->cd();

tree->Write();

nuNtuple->Close();

delete nuNtuple;

A couple of issues, as currently implemented, with this approach that I’ve noticed include:

1. the version number in the data_t.hh have never been incremented even when the layout
changes (i.e. ClassDef(data_t,1) in data_t.hh always). In the new scheme one needs to
always be sure to increment the version number whenever the data layout changes.

2. g4data->Clear() is never called, which means that entries that that vary in length (i.e. most
of the minerνa additions) retain high water values beyond the current ntrajectory from
previous entries. This isn’t an issue if one never indexes into the array beyond the current
entry’s set of values, but it can be confusing and it will cause the file to be larger than necessary
(random values don’t compress as well as 0).

The new ntuple format would be simply replacing the data_t with a new class. Member variable
names would need adjustments in the NumiAnalysis code. Additionally, one would want to apply
the Clear() method before the fill, which should reset any stl vectors to have zero length. Any
instances of using fixed indexing during filling would need to be converted to push_back() methods
on the element, i.e.:

//OLD: g4data->NdxdzNear[ii] = ...

dk2nu->ndxdznear.push_back(...);

12

4 Proposal

4.1 dk2nu.h

1 /**

2 * \class dk2nu

3 * \file dk2nu.h

4 *

5 * \brief A class that defines the "dk2nu" object used as the primary

6 * branch for a TTree for the output of neutrino flux simulations

7 * such as g4numi, g4numi_flugg, etc.

8 *

9 * \author (last to touch it) $Author: rhatcher $

10 *

11 * \version $Revision: 1.1 $

12 *

13 * \date $Date: 2012/04/02 21:19:46 $

14 *

15 * Contact: rhatcher@fnal.gov

16 *

17 * $Id: dk2nu.h,v 1.1 2012/04/02 21:19:46 rhatcher Exp $

18 *

19 * Notes tagged with "DK2NU" are questions that should be answered

20 */

21

22 #ifndef DK2NU_H

23 #define DK2NU_H

24

25 #include "TROOT.h"

26 #include "TObject.h"

27

28 #include <vector>

29 #include <string>

30

31 class dk2nu

32 {

33 private:

34 ClassDef(dk2nu,2) // KEEP THIS UP-TO-DATE! increment for each change

35

36 public:

37 /**

38 * Public methods for constructing/destruction and resetting the data

39 */

40 dk2nu();

41 virtual ~dk2nu();

42 void Clear(const std::string &opt = ""); ///< reset everything to undefined

43

44 /**

45 * All the data members are public as this class is used as a

46 * generalized struct, with just the addition of the Clear() method.

47 * As they will be branches of a TTree no specialized naming

48 * indicators signifying that they are member data of a class

49 * will be used, nor will any fancy capitalization schemes.

50 */

13

51

52 /**

53 *===

54 * General Info

55 */

56 Int_t job; ///< identifying job #

57 Int_t potnum; ///< proton # processed by simulation

58

59 /**

60 *===

61 * Fixed Decays:

62 * A random ray plus those directed at specific points.

63 */

64 Double_t ndxdz; ///< dx/dz direction slope for random decay

65 Double_t ndydz; ///< dy/dz direction slope for random decay

66 Double_t npz; ///< z-axis momentum for random decay

67 Double_t nenergy; ///< neutrino energy for random decay

68

69 std::vector<Double_t> nupx; ///< px for nu at location(s)

70 std::vector<Double_t> nupy; ///< py for nu at location(s)

71 std::vector<Double_t> nupz; ///< pz for nu at location(s)

72 std::vector<Double_t> nuenergy; ///< E for nu at location(s)

73 std::vector<Double_t> nuwgt; ///< weight for nu at location(s)

74

75 /**

76 *===

77 * Decay Data:

78 * Core information about the neutrino and the decay that gave rise to it.

79 * % = necessary for reweighting

80 */

81 Int_t norig; ///< not used?

82 Int_t ndecay; ///< decay process (see dkproc_t)

83 Int_t ntype; ///< % neutrino flavor (PDG? code)

84

85 Double_t vx; ///< % neutrino production vertex x

86 Double_t vy; ///< % neutrino production vertex y

87 Double_t vz; ///< % neutrino production vertex z

88 Double_t pdpx; ///< % px momentum of nu parent at (vx,vy,vz)

89 Double_t pdpy; ///< % py momentum of nu parent at (vx,vy,vz)

90 Double_t pdpz; ///< % pz momentum of nu parent at (vx,vy,vz)

91

92 /** these are used in muon decay case? */

93 Double_t ppdxdz; ///< % direction of nu parent at its production point

94 Double_t ppdydz; ///< % direction of nu parent at its production point

95 Double_t pppz; ///< % z momentum of nu parent at its production point

96 Double_t ppenergy; ///< % energy of nu parent at its production point

97

98 Double_t ppmedium; ///< material nu parent was produced in

99 Int_t ptype; ///< % nu parent species (PDG? code)

100

101 /** momentum and energy of nu grandparent at

102 muons: grandparent decay point

103 hadrons: grandparent production point

104 Huh? this needs better documentation

14

105 */

106 Double_t muparpx; ///< %

107 Double_t muparpy; ///< %

108 Double_t muparpz; ///< %

109 Double_t mupare; ///< % energy of nu grandparent

110

111 Double_t necm; ///< % nu energy in center-of-mass frame

112 Double_t nimpwt; ///< % production vertex z of nu parent

113

114 /**

115 *===

116 * (Grand)Parent Info:

117 *

118 */

119

120 /**

121 * DK2NU: are these needed for any/all cases?

122 */

123 Double_t ppvx; ///< production vertex x of nu parent

124 Double_t ppvy; ///< production vertex y of nu parent

125 Double_t ppvz; ///< production vertex z of nu parent

126

127 /**

128 * DK2NU: do we need these? these aren’t filled by flugg, others?

129 */

130 Double_t xpoint; ///< ?

131 Double_t ypoint; ///< ?

132 Double_t zpoint; ///< ?

133

134 /**

135 * these ancestors are possibly, but not necessarily, the direct nu parent

136 * DK2NU: can these be removed in favor of cascade info below?

137 */

138 Double_t tvx; ///< x position of nu ancestor as it exits target

139 Double_t tvy; ///< y position of nu ancestor as it exits target

140 Double_t tvz; ///< z position of nu ancestor as it exits target

141 Double_t tpx; ///< x momentum of nu ancestor as it exits target

142 Double_t tpy; ///< y momentum of nu ancestor as it exits target

143 Double_t tpz; ///< z momentum of nu ancestor as it exits target

144 Int_t tptype; ///< species of ancestor exiting the target

145 Int_t tgen; ///< nu parent generation in cascade:

146 ///< 1=primary proton

147 ///< 2=particles produced by proton interaction

148 ///< etc

149 /**

150 * these are only in g3numi and flugg

151 * DK2NU: can these be removed in favor of cascade info below?

152 * for now we’ll leave them in place

153 */

154 Int_t tgptype; ///< species of parent of particle exiting the target (PDG code?)

155

156 Double_t tgppx; ///< x momentum of parent of particle exiting target at the parent production point ...

157 Double_t tgppy; ///< y momentum

158 Double_t tgppz; ///< z momentum

15

159 Double_t tprivx; ///< primary particle interaction vtx (not used?)

160 Double_t tprivy; ///< primary particle interaction vtx (not used?)

161 Double_t tprivz; ///< primary particle intereaction vtx (not used?)

162 Double_t beamx; ///< primary proton origin

163 Double_t beamy; ///< primary proton origin

164 Double_t beamz; ///< primary proton origin

165 Double_t beampx; ///< primary proton momentum

166 Double_t beampy; ///< primary proton momentum

167 Double_t beampz; ///< primary proton momentum

168

169 /**

170 * these are in the g4numi and minerva ntuples

171 * DK2NU: but what do they mean and are the duplicative to

172 * the more complete progenitor info below?

173 */

174 std::vector<Double_t> trkx;

175 std::vector<Double_t> trky;

176 std::vector<Double_t> trkz;

177 std::vector<Double_t> trkpx;

178 std::vector<Double_t> trkpy;

179 std::vector<Double_t> trkpz;

180

181 /**

182 *===

183 * Progenitor Info:

184 * Complete ancestral info from primary proton down to decaying particle

185 *

186 * DK2NU: this is mainly (based on) the minerva extensions *except*

187 * some names are changed to avoid confusion and

188 * distances will be cm, energies in GeV (unless the whole

189 * record uniformly uses something else and is flagged as such)

190 */

191 std::vector<Int_t> apdg; ///< ancestor species

192 std::vector<Int_t> trackid; ///< ??? particle trackId

193 std::vector<Int_t> parentid; ///< ??? parentId

194

195 std::vector<Double_t> startx; ///< particle x initial position

196 std::vector<Double_t> starty; ///< particle y initial position

197 std::vector<Double_t> startz; ///< particle z initial position

198 std::vector<Double_t> stopx; ///< particle x final position

199 std::vector<Double_t> stopy; ///< particle y final position

200 std::vector<Double_t> stopz; ///< particle z final position

201

202 std::vector<Double_t> startpx; ///< particle x initial momentum

203 std::vector<Double_t> startpy; ///< particle y initial momentum

204 std::vector<Double_t> startpz; ///< particle z initial momentum

205 std::vector<Double_t> stoppx; ///< particle x final momentum

206 std::vector<Double_t> stoppy; ///< particle y final momentum

207 std::vector<Double_t> stoppz; ///< particle z final momentum

208

209 std::vector<Double_t> pprodpx; ///< parent x momentum when producing this particle, MeV/c

210 std::vector<Double_t> pprodpy; ///< parent y momentum when producing this particle

211 std::vector<Double_t> pprodpz; ///< parent z momentum when producing this particle

212

16

213 std::vector<std::string> proc; ///< name of the process that creates this particle

214

215 std::vector<std::string> ivol; ///< name of the volume where the particle starts

216 std::vector<std::string> fvol; ///< name of the volume where the particle stops

217

218 /**

219 *===

220 * Special Info:

221 */

222 Int_t flagbits; ///< bits signify non-std setting such as

223 ///< Geant vs. PDG codes, mm vs. cm, Mev vs. GeV

224 std::vector<Int_t> vint; ///< user defined vector of integers

225 std::vector<Double_t> vdbl; ///< user defined vector of doubles

226

227 /**

228 *===

229 * Random Info:

230 * blah, blah, blah

231 */

232

233 Int_t ptrkid; ///< lbne addition

234

235 /**

236 *===

237 * Specialized enumerations

238 */

239

240 /**

241 * Proposed flag bits:

242 */

243 typedef enum flgbitval {

244 flg_dist_m = 0x00000000, ///< no special bit for meters

245 flg_dist_cm = 0x00020000, ///< distances in cm (default)

246 flg_dist_mm = 0x00030000, ///< distances in mm

247 flg_e_gev = 0x00000000, ///< no special bit for GeV (default)

248 flg_e_mev = 0x00300000, ///< energies in MeV

249 flg_usr_mask = 0x0000FFFF,

250 flg_reserved_mask = 0xFFFF0000

251 } flgbitval_t;

252

253 /**

254 * Enumeration of decay processes, stored in "ndecay"

255 * store as integer; these are for reference

256 * DK2NU: should there be an associated AsString() method

257 * that returns a text (optionally formatted for latex?)?

258 */

259 typedef enum dkproc {

260 dkp_unknown = 0,

261 dkp_k0l_nuepimep = 1, ///< k0long => nu_e + pi- + e+

262 dkp_k0l_nuebpipem = 2, ///< k0long => nu_e_bar + p+ + e-

263 dkp_k0l_numupimmup = 3, ///< k0long => nu_mu + pi- + mu+

264 dkp_k0l_numubpipmum = 4, ///< k0long => nu_mu_bar + pi+ + mu-

265 dkp_kp_numumup = 5, ///< k+ => nu_mu + mu+

266 dkp_kp_nuepi0ep = 6, ///< k+ => nu_e + pi0 + e+

17

267 dkp_kp_numupi0mup = 7, ///< k+ => nu_mu + pi0 + mu+

268 dkp_kp_numubmum = 8, ///< k- => nu_mu_bar + mu-

269 dkp_kp_nuebpi0em = 9, ///< k- => nu_e_bar + pi0 + e-

270 dkp_kp_numubpi0mum = 10, ///< k- => nu_mu_bar + pi0 + mu-

271 dkp_mup_nusep = 11, ///< mu+ => nu_mu_bar + nu_e + e+

272 dkp_mum_nusep = 12, ///< mu- => nu_mu + nu_e_bar + e-

273 dk_pip_numumup = 13, ///< pi+ => nu_mu + mu+

274 dk_pim_numubmum = 14, ///< pi- => nu_mu_bar + mu-

275 dkp_maximum, ///< one-beyond end for iterating

276 dkp_other = 999, ///< flag for unusual cases

277 } dkproc_t;

278

279 };

280

281 #endif

4.2 dkmeta.h

1 /**

2 * \class dkmeta

3 * \file dkmeta.h

4 *

5 * \brief A class that defines the "dkmeta" object used as the

6 * branch for a TTree for the output of meta-data from

7 * neutrino flux simulations such as g4numi, g4numi_flugg, etc.

8 * This tree has one entry of this type for the file. Kept

9 * as a tree so files can be chained.

10 *

11 * \author (last to touch it) $Author: rhatcher $

12 *

13 * \version $Revision: 1.1 $

14 *

15 * \date $Date: 2012/04/02 21:19:46 $

16 *

17 * Contact: rhatcher@fnal.gov

18 *

19 * $Id: dkmeta.h,v 1.1 2012/04/02 21:19:46 rhatcher Exp $

20 *

21 * Notes tagged with "DKMETA" are questions that should be answered

22 */

23

24 #ifndef DKMETA_H

25 #define DKMETA_H

26

27 #include "TROOT.h"

28 #include "TObject.h"

29

30 #include <vector>

31 #include <string>

32

33 class dkmeta

34 {

35 private:

36 ClassDef(dkmeta,2) // KEEP THIS UP-TO-DATE! increment for each change

18

37

38 public:

39 /**

40 * Public methods for constructing/destruction and resetting the data

41 */

42 dkmeta();

43 virtual ~dkmeta();

44 void Clear(const std::string &opt = ""); ///< reset everything to undefined

45

46 /**

47 * All the data members are public as this class is used as a

48 * generalized struct, with just the addition of the Clear() method.

49 * As they will be branches of a TTree no specialized naming

50 * indicators signifying that they are member data of a class

51 * will be used, nor will any fancy capitalization schemes.

52 */

53

54 /**

55 *===

56 * General Info:

57 */

58 Int_t job; ///< identifying job # (keep files distinct)

59 Double_t pots; ///< protons-on-target

60

61 /**

62 * DKMETA:

63 * formatted strings are most flexible ...

64 * but not necessarily convenient to use

65 * ??? Should parts of these be standardized ???

66 */

67 std::string beamsim; ///< e.g. "flugg" or "g4numi/<tag>"

68 std::string physics; ///< e.g. "fluka08", "g4.9.3p01"

69 std::string physcuts; ///< tracking cuts e.g. "threshold=0.1GeV"

70 std::string tgtcfg; ///< target config e.g. "minos/epoch3/-10cm"

71 std::string horncfg; ///< horn config e.g. "FHC/185A/LE/h1xoff=1mm"

72 std::string dkvolcfg; ///< decay vol config e.g. "helium" or "vacuum"

73

74 /**

75 *===

76 * Beam Info:

77 */

78 Double_t beam0x; ///< x of beam center at start

79 Double_t beam0y; ///< y of beam center at start

80 Double_t beam0z; ///< z of beam start

81 Double_t beamhwidth; ///< horizontal width of beam

82 Double_t beamvwidth; ///< vertical width of beam

83 Double_t beamdxdz; ///< beam slope dx/dz

84 Double_t beamdydz; ///< beam slope dy/dz

85

86 /**

87 *===

88 * Detector Position Info:

89 * Values are in beam coordinate system w/ units of "cm"

90 */

19

91 std::vector<Double_t> xloc; ///< x positions of detectors

92 std::vector<Double_t> yloc; ///< y positions of detectors

93 std::vector<Double_t> zloc; ///< z positions of detectors

94

95 std::vector<std::string> nameloc; ///< names of detector locations (e.g. "NOvA-ND-3x3")

96

97 /**

98 *===

99 * Special Info:

100 * Document extensibility enhancements

101 */

102 std::vector<std::string> vintnames; ///< names of elements for user defined vector of integers

103 std::vector<std::string> vdblnames; ///< names of elements for user defined vector of doubles

104

105 };

106

107 #endif

5 Example test program for filling

1 //

2 // test creating and filling a TTree based on dk2nu.h (dk2nu.C)

3 // this script can be run using:

4 // root -b -q test_fill_dk2nu.C+

5 //

6 // rhatcher@fnal.gov 2012-04-03

7 //==

8

9 #include "dk2nu.h"

10 #include "dkmeta.h"

11

12 // include this because we’re not linking to anything external

13 // so we need to include the source for dk2nu::Clear() and dkmeta::Clear()

14 #include "dk2nu.cc"

15 #include "dkmeta.cc"

16

17 // include standardized code for reading location text file

18 #include "readlocations.C"

19

20 // include standardized code for getting energy/weight vectors for locations

21 #include "calclocweights.C"

22 // make a dictionary for dk2nu class, again because no external linkages

23 #ifdef __CINT__

24 #pragma link C++ class dk2nu+;

25 #pragma link C++ class dkmeta+;

26 #endif

27

28 #include "TFile.h"

29 #include "TTree.h"

30 #include "TRandom3.h"

31

32 // flugg 500K POT lowth files seem to have 510000 as an upper limit on

33 // # of entries. So to test for estimate of file size one needs to have

20

34 // that many entries _and_ semi-sensible values for all branches (so

35 // compression isn’t better than it would be in real life).

36 void test_fill_dk2nu(unsigned int nentries=1000)

37 {

38

39 // stuff...

40 TRandom3* rndm = new TRandom3();

41

42 ///

43 /// equivalent to NumiAnalysis::NumiAnalysis() in g4numi

44 ///

45

46 // create objects

47 dk2nu* dk2nuObj = new dk2nu;

48 dkmeta* dkmetaObj = new dkmeta;

49

50 // read the text file for locations, fill the dkmeta object

51 std::string locfilename = "locfile.txt";

52 readlocations(locfilename,dkmetaObj);

53

54 // print out what we have for locations

55 size_t nloc = dkmetaObj->nameloc.size();

56 std::cout << "Read " << nloc << " locations read from \""

57 << locfilename << "\"" << std::endl;

58 for (size_t iloc = 0; iloc < nloc; ++iloc) {

59 std::cout << "{" << setw(10) << dkmetaObj->xloc[iloc]

60 << "," << setw(10) << dkmetaObj->yloc[iloc]

61 << "," << setw(10) << dkmetaObj->zloc[iloc]

62 << " } \"" << dkmetaObj->nameloc[iloc] << "\""

63 << std::endl;

64 }

65

66 ///

67 /// equivalent to NumiAnalysis::book() in g4numi

68 ///

69

70 // create file, book tree, set branch address to created object

71 TFile* treeFile = new TFile("test_dk2nu.root","RECREATE");

72 TTree* dk2nu_tree = new TTree("dk2nu","FNAL neutrino ntuple");

73 dk2nu_tree->Branch("dk2nu","dk2nu",&dk2nuObj,32000,1);

74 TTree* dkmeta_tree = new TTree("dkmeta","FNAL neutrino ntuple metadata");

75 dkmeta_tree->Branch("dkmeta","dkmeta",&dkmetaObj,32000,1);

76

77 int myjob = 42; // unique identifying job # for this series

78

79 // fill a few element of a few entries

80 for (unsigned int ipot=1; ipot <= nentries; ++ipot) {

81

82 ///

83 /// equivalent to NumiAnalysis::FillNeutrinoNtuple() in g4numi

84 /// (only the part within the loop over ipot)

85 ///

86

87 // clear the object in preparation for filling an entry

21

88 dk2nuObj->Clear();

89

90 // fill with info ... only a few elements, just for test purposes

91 dk2nuObj->job = myjob;

92 dk2nuObj->potnum = ipot;

93

94 dk2nuObj->ptype = 211; // pi+

95 if (ipot % 5 == 0) dk2nuObj->ptype = 321; // k+

96 if (ipot % 50 == 0) dk2nuObj->ptype = 13; // mu-

97

98 TVector3 p3(1,2,3); // bogus random decay vector

99

100 // fill nupx, nupy, nupz, nuenergy, nuwgt(=1) for random decay

101 // should be the 0-th entry

102 if (dkmetaObj->nameloc[0] == "random decay") {

103 dk2nuObj->nupx.push_back(p3.x());

104 dk2nuObj->nupy.push_back(p3.y());

105 dk2nuObj->nupz.push_back(p3.z());

106 dk2nuObj->nuenergy.push_back(p3.Mag());

107 dk2nuObj->nuwgt.push_back(1.0);

108 }

109 // fill location specific, locations in metadata

110 calclocweights(dkmetaObj,dk2nuObj);

111

112 // just test the filling of vector

113 unsigned int nancestors = rndm->Integer(12) + 1; // at least one entry

114 for (unsigned int janc = 0; janc < nancestors; ++janc) {

115 int xpdg = rndm->Integer(100);

116 dk2nuObj->apdg.push_back(janc*10000+xpdg);

117 }

118

119 // push a couple of user defined values for each entry

120 dk2nuObj->vint.push_back(42);

121 dk2nuObj->vint.push_back(ipot);

122

123 // push entry out to tree

124 dk2nu_tree->Fill();

125

126 } // end of fill loop

127

128 /// fill the rest of the metadata (locations filled above)

129 //no// dkmetaObj->Clear();

130 dkmetaObj->job = myjob;

131 dkmetaObj->pots = 50000; // ntuple represents this many protons-on-target

132 dkmetaObj->beamsim = "test_fill_dk2nu.C";

133 dkmetaObj->physics = "bogus";

134 dkmetaObj->vintnames.push_back("mytemp_42");

135 dkmetaObj->vintnames.push_back("mytemp_ipot");

136 // push entry out to tree

137 dkmeta_tree->Fill();

138

139 ///

140 /// equivalent to NumiAnalysis::finish() in g4numi

141 ///

22

142

143 // finish and clean-up

144 treeFile->cd();

145 dk2nu_tree->Write();

146 dkmeta_tree->Write();

147 treeFile->Close();

148 delete treeFile; treeFile=0;

149 dk2nu_tree=0;

150 dkmeta_tree=0;

151 }

5.1 readlocations.C

Simulation code would no longer hardcode location information into the source; instead the desired
positions would be read from a simple text file.

1 #include <string>

2 #include <iostream>

3 #include <fstream>

4 #include <iomanip>

5

6 #include "dkmeta.h"

7

8 /// Read a text file that contains a header lines followed by

9 /// lines of quartets of "<xpos> <ypos> <zpos> <text string>"

10 /// and fill vectors. Trim off leading/trailing blanks and

11 /// quotes (single/double) from the string.

12

13 void readlocations(std::string locfilename,

14 std::vector<std::string>& nameloc,

15 std::vector<double>& xloc,

16 std::vector<double>& yloc,

17 std::vector<double>& zloc)

18 {

19

20 std::ifstream locfile(locfilename.c_str());

21

22 int iline=0;

23

24 // read/skip header line in text file

25 char header[1000];

26 locfile.getline(header,sizeof(header));

27 ++iline;

28

29 // read lines

30 char tmp[1001];

31 size_t tmplen = sizeof(tmp);

32 while (! locfile.eof()) {

33 double x, y, z;

34 locfile >> x >> y >> z;

35 locfile.getline(tmp,tmplen-1);

36 size_t i = locfile.gcount();

37 // make sure the c-string is null terminated

38 size_t inull = i;

39 //if (inull < 0) inull = 0;

23

40 if (inull > tmplen-1) inull = tmplen-1;

41 tmp[inull] = ’\0’;

42 std::string name(tmp);

43 // ignore leading & trailing blanks (and any single/double quotes)

44 size_t ilast = name.find_last_not_of(" \t\n’\"");

45 name.erase(ilast+1,std::string::npos); // trim tail

46 size_t ifirst = name.find_first_not_of(" \t\n’\"");

47 name.erase(0,ifirst); // trim head

48

49 ++iline;

50 if (! locfile.good()) {

51 //if (verbose)

52 // std::cout << "stopped reading on line " << iline << std::endl;

53 break;

54 }

55 nameloc.push_back(name);

56 xloc.push_back(x);

57 yloc.push_back(y);

58 zloc.push_back(z);

59 }

60

61 }

62

63 /// a variant that will fill the dkmeta object

64 void readlocations(std::string locfilename, dkmeta* dkmetaObj)

65 {

66 /// read & print the locations where weights are to be calculated

67 std::vector<std::string>& nameloc = dkmetaObj->nameloc;

68 std::vector<double>& xloc = dkmetaObj->xloc;

69 std::vector<double>& yloc = dkmetaObj->yloc;

70 std::vector<double>& zloc = dkmetaObj->zloc;

71

72 // make an entry for the random decay

73 nameloc.push_back("random decay");

74 xloc.push_back(0);

75 yloc.push_back(0);

76 zloc.push_back(0);

77

78 readlocations(locfilename, nameloc, xloc, yloc, zloc);

79 }

5.2 calclocweights.C

Standardized code for calculating weights for detector positions.

1 #include <iostream>

2 #include <cassert>

3

4 #include "dkmeta.h"

5 #include "dk2nu.h"

6

7 #include "TMath.h"

8 #include "TVector3.h"

9

10 // forward declaration

24

11 int CalcEnuWgt(const dk2nu* dk2nuObj, const TVector3& xyz,

12 double& enu, double& wgt_xy);

13

14 // user interface

15 void calclocweights(dkmeta* dkmetaObj, dk2nu* dk2nuObj)

16 {

17 size_t nloc = dkmetaObj->nameloc.size();

18 for (size_t iloc = 0; iloc < nloc; ++iloc) {

19 // skip calculation for random location ... should already be filled

20 if (dkmetaObj->nameloc[iloc] == "random decay") continue;

21 TVector3 xyzDet(dkmetaObj->xloc[iloc],

22 dkmetaObj->yloc[iloc],

23 dkmetaObj->zloc[iloc]);

24 double enu_xy = 0;

25 double wgt_xy = 0;

26 CalcEnuWgt(dk2nuObj,xyzDet,enu_xy,wgt_xy);

27 TVector3 xyzDk(dk2nuObj->vx,dk2nuObj->vy,dk2nuObj->vz);

28 TVector3 p3 = enu_xy * (xyzDet - xyzDk).Unit();

29 dk2nuObj->nupx.push_back(p3.x());

30 dk2nuObj->nupy.push_back(p3.y());

31 dk2nuObj->nupz.push_back(p3.z());

32 dk2nuObj->nuenergy.push_back(enu_xy);

33 dk2nuObj->nuwgt.push_back(wgt_xy);

34 }

35 }

36

37 //___

38 int CalcEnuWgt(const dk2nu* dk2nuObj, const TVector3& xyz,

39 double& enu, double& wgt_xy)

40 {

41

42 // Neutrino Energy and Weight at arbitrary point

43 // based on:

44 // NuMI-NOTE-BEAM-0109 (MINOS DocDB # 109)

45 // Title: Neutrino Beam Simulation using PAW with Weighted Monte Carlos

46 // Author: Rick Milburn

47 // Date: 1995-10-01

48

49 // history:

50 // jzh 3/21/96 grab R.H.Milburn’s weighing routine

51 // jzh 5/ 9/96 substantially modify the weighting function use dot product

52 // instead of rotation vecs to get theta get all info except

53 // det from ADAMO banks neutrino parent is in Particle.inc

54 // Add weighting factor for polarized muon decay

55 // jzh 4/17/97 convert more code to double precision because of problems

56 // with Enu>30 GeV

57 // rwh 10/ 9/08 transliterate function from f77 to C++

58

59 // original function description:

60 // Real function for use with PAW Ntuple To transform from destination

61 // detector geometry to the unit sphere moving with decaying hadron with

62 // velocity v, BETA=v/c, etc.. For (pseudo)scalar hadrons the decays will

63 // be isotropic in this sphere so the fractional area (out of 4-pi) is the

64 // fraction of decays that hit the target. For a given target point and

25

65 // area, and given x-y components of decay transverse location and slope,

66 // and given decay distance from target ans given decay GAMMA and

67 // rest-frame neutrino energy, the lab energy at the target and the

68 // fractional solid angle in the rest-frame are determined.

69 // For muon decays, correction for non-isotropic nature of decay is done.

70

71 // Arguments:

72 // dk2nu :: contains current decay information

73 // xyz :: 3-vector of position to evaluate

74 // in *beam* frame coordinates (cm units)

75 // enu :: resulting energy

76 // wgt_xy :: resulting weight

77 // Return:

78 // (int) :: error code

79 // Assumptions:

80 // Energies given in GeV

81 // Particle codes have been translated from GEANT into PDG codes

82

83 // for now ... these masses _should_ come from TDatabasePDG

84 // but use these hard-coded values to "exactly" reproduce old code

85 //

86 const double kPIMASS = 0.13957;

87 const double kKMASS = 0.49368;

88 const double kK0MASS = 0.49767;

89 const double kMUMASS = 0.105658389;

90 const double kOMEGAMASS = 1.67245;

91

92 const int kpdg_nue = 12; // extended Geant 53

93 const int kpdg_nuebar = -12; // extended Geant 52

94 const int kpdg_numu = 14; // extended Geant 56

95 const int kpdg_numubar = -14; // extended Geant 55

96

97 const int kpdg_muplus = -13; // Geant 5

98 const int kpdg_muminus = 13; // Geant 6

99 const int kpdg_pionplus = 211; // Geant 8

100 const int kpdg_pionminus = -211; // Geant 9

101 const int kpdg_k0long = 130; // Geant 10 (K0=311, K0S=310)

102 const int kpdg_k0short = 310; // Geant 16

103 const int kpdg_k0mix = 311;

104 const int kpdg_kaonplus = 321; // Geant 11

105 const int kpdg_kaonminus = -321; // Geant 12

106 const int kpdg_omegaminus = 3334; // Geant 24

107 const int kpdg_omegaplus = -3334; // Geant 32

108

109 const double kRDET = 100.0; // set to flux per 100 cm radius

110

111 double xpos = xyz.X();

112 double ypos = xyz.Y();

113 double zpos = xyz.Z();

114

115 enu = 0.0; // don’t know what the final value is

116 wgt_xy = 0.0; // but set these in case we return early due to error

117

118

26

119 // in principle we should get these from the particle DB

120 // but for consistency testing use the hardcoded values

121 double parent_mass = kPIMASS;

122 switch (dk2nuObj->ptype) {

123 case kpdg_pionplus:

124 case kpdg_pionminus:

125 parent_mass = kPIMASS;

126 break;

127 case kpdg_kaonplus:

128 case kpdg_kaonminus:

129 parent_mass = kKMASS;

130 break;

131 case kpdg_k0long:

132 case kpdg_k0short:

133 case kpdg_k0mix:

134 parent_mass = kK0MASS;

135 break;

136 case kpdg_muplus:

137 case kpdg_muminus:

138 parent_mass = kMUMASS;

139 break;

140 case kpdg_omegaminus:

141 case kpdg_omegaplus:

142 parent_mass = kOMEGAMASS;

143 break;

144 default:

145 std::cerr << "NU_REWGT unknown particle type " << dk2nuObj->ptype

146 << std::endl << std::flush;

147 assert(0);

148 return 1;

149 }

150

151 double parentp2 = (dk2nuObj->pdpx*dk2nuObj->pdpx +

152 dk2nuObj->pdpy*dk2nuObj->pdpy +

153 dk2nuObj->pdpz*dk2nuObj->pdpz);

154 double parent_energy = TMath::Sqrt(parentp2 +

155 parent_mass*parent_mass);

156 double parentp = TMath::Sqrt(parentp2);

157

158 double gamma = parent_energy / parent_mass;

159 double gamma_sqr = gamma * gamma;

160 double beta_mag = TMath::Sqrt((gamma_sqr - 1.0)/gamma_sqr);

161

162 // Get the neutrino energy in the parent decay CM

163 double enuzr = dk2nuObj->necm;

164 // Get angle from parent line of flight to chosen point in beam frame

165 double rad = TMath::Sqrt((xpos-dk2nuObj->vx)*(xpos-dk2nuObj->vx) +

166 (ypos-dk2nuObj->vy)*(ypos-dk2nuObj->vy) +

167 (zpos-dk2nuObj->vz)*(zpos-dk2nuObj->vz));

168

169 double emrat = 1.0;

170 double costh_pardet = -999., theta_pardet = -999.;

171

172 // boost correction, but only if parent hasn’t stopped

27

173 if (parentp > 0.) {

174 costh_pardet = (dk2nuObj->pdpx*(xpos-dk2nuObj->vx) +

175 dk2nuObj->pdpy*(ypos-dk2nuObj->vy) +

176 dk2nuObj->pdpz*(zpos-dk2nuObj->vz))

177 / (parentp * rad);

178 if (costh_pardet > 1.0) costh_pardet = 1.0;

179 if (costh_pardet < -1.0) costh_pardet = -1.0;

180 theta_pardet = TMath::ACos(costh_pardet);

181

182 // Weighted neutrino energy in beam, approx, good for small theta

183 emrat = 1.0 / (gamma * (1.0 - beta_mag * costh_pardet));

184 }

185

186 enu = emrat * enuzr; // the energy ... normally

187

188 // Get solid angle/4pi for detector element

189 double sangdet = (kRDET*kRDET /

190 ((zpos-dk2nuObj->vz)*(zpos-dk2nuObj->vz))) / 4.0;

191

192 // Weight for solid angle and lorentz boost

193 wgt_xy = sangdet * (emrat * emrat); // ! the weight ... normally

194

195 // Done for all except polarized muon decay

196 // in which case need to modify weight

197 // (must be done in double precision)

198 if (dk2nuObj->ptype == kpdg_muplus || dk2nuObj->ptype == kpdg_muminus) {

199 double beta[3], p_dcm_nu[4], p_nu[3], p_pcm_mp[3], partial;

200

201 // Boost neu neutrino to mu decay CM

202 beta[0] = dk2nuObj->pdpx / parent_energy;

203 beta[1] = dk2nuObj->pdpy / parent_energy;

204 beta[2] = dk2nuObj->pdpz / parent_energy;

205 p_nu[0] = (xpos-dk2nuObj->vx)*enu/rad;

206 p_nu[1] = (ypos-dk2nuObj->vy)*enu/rad;

207 p_nu[2] = (zpos-dk2nuObj->vz)*enu/rad;

208 partial = gamma *

209 (beta[0]*p_nu[0] + beta[1]*p_nu[1] + beta[2]*p_nu[2]);

210 partial = enu - partial/(gamma+1.0);

211 // the following calculation is numerically imprecise

212 // especially p_dcm_nu[2] leads to taking the difference of numbers

213 // of order ~10’s and getting results of order ~0.02’s

214 // for g3numi we’re starting with floats (ie. good to ~1 part in 10^7)

215 p_dcm_nu[0] = p_nu[0] - beta[0]*gamma*partial;

216 p_dcm_nu[1] = p_nu[1] - beta[1]*gamma*partial;

217 p_dcm_nu[2] = p_nu[2] - beta[2]*gamma*partial;

218 p_dcm_nu[3] = TMath::Sqrt(p_dcm_nu[0]*p_dcm_nu[0] +

219 p_dcm_nu[1]*p_dcm_nu[1] +

220 p_dcm_nu[2]*p_dcm_nu[2]);

221

222 // Boost parent of mu to mu production CM

223 double particle_energy = dk2nuObj->ppenergy;

224 gamma = particle_energy/parent_mass;

225 beta[0] = dk2nuObj->ppdxdz * dk2nuObj->pppz / particle_energy;

226 beta[1] = dk2nuObj->ppdydz * dk2nuObj->pppz / particle_energy;

28

227 beta[2] = dk2nuObj->pppz / particle_energy;

228 partial = gamma * (beta[0]*dk2nuObj->muparpx +

229 beta[1]*dk2nuObj->muparpy +

230 beta[2]*dk2nuObj->muparpz);

231 partial = dk2nuObj->mupare - partial/(gamma+1.0);

232 p_pcm_mp[0] = dk2nuObj->muparpx - beta[0]*gamma*partial;

233 p_pcm_mp[1] = dk2nuObj->muparpy - beta[1]*gamma*partial;

234 p_pcm_mp[2] = dk2nuObj->muparpz - beta[2]*gamma*partial;

235 double p_pcm = TMath::Sqrt (p_pcm_mp[0]*p_pcm_mp[0] +

236 p_pcm_mp[1]*p_pcm_mp[1] +

237 p_pcm_mp[2]*p_pcm_mp[2]);

238

239 const double eps = 1.0e-30; // ? what value to use

240 if (p_pcm < eps || p_dcm_nu[3] < eps) {

241 return 3; // mu missing parent info?

242 }

243 // Calc new decay angle w.r.t. (anti)spin direction

244 double costh = (p_dcm_nu[0]*p_pcm_mp[0] +

245 p_dcm_nu[1]*p_pcm_mp[1] +

246 p_dcm_nu[2]*p_pcm_mp[2]) /

247 (p_dcm_nu[3]*p_pcm);

248 if (costh > 1.0) costh = 1.0;

249 if (costh < -1.0) costh = -1.0;

250 // Calc relative weight due to angle difference

251 double wgt_ratio = 0.0;

252 switch (dk2nuObj->ntype) {

253 case kpdg_nue:

254 case kpdg_nuebar:

255 wgt_ratio = 1.0 - costh;

256 break;

257 case kpdg_numu:

258 case kpdg_numubar:

259 {

260 double xnu = 2.0 * enuzr / kMUMASS;

261 wgt_ratio = ((3.0-2.0*xnu) - (1.0-2.0*xnu)*costh) / (3.0-2.0*xnu);

262 break;

263 }

264 default:

265 return 2; // bad neutrino type

266 }

267 wgt_xy = wgt_xy * wgt_ratio;

268

269 } // ptype is muon

270

271 return 0;

272 }

273

5.3 example input location file: locfile.txt

1 location in beam coordinates (cm) tag

2 0.1234 0.567 100000. MINOS NearDet

3 0.9999 0.987654321 735.0e5 MINOS FarDet "

4 100.42 20.31415 80000. "bogus position that I made up’

29

5 200.84 20.12121 500.another bogus position

5.4 output when running test script

$ root -b -q test_fill_dk2nu.C+

root [0]

Processing test_fill_dk2nu.C+...

Read 5 locations read from "locfile.txt"

{ 0, 0, 0 } "random decay"

{ 0.1234, 0.567, 100000 } "MINOS NearDet"

{ 0.9999, 0.987654, 7.35e+07 } "MINOS FarDet"

{ 100.42, 20.3142, 80000 } "bogus position that I made up"

{ 200.84, 20.1212, 500 } "another bogus position"

6 Example use of the tree in a root session

TFile* myfile = TFile::Open("test_dk2nu.root","READONLY");

TTree* mytree = 0;

myfile->GetObject("dk2nu",mytree);

mytree->Scan("run:evtno:@apdg.size():apdg[2]");

The @ in @apdg.size() is the root mechanism for signaling that the .size() method is to be
applied to the collection as a whole and not on individual items, so this prints the length of the apdg

stl vector. The apdg[2] prints the 3rd entry (if it exists); using [] (or giving none) for vectors
performs an implicit loop. The looping rules for Scan() or Draw() on array elements in TTrees are
complex and appropriate documentation should be consulted1.

7 Auxillary numbering schemes

1http://root.cern.ch/root/html/TTree.html#TTree:Draw@2

30

http://root.cern.ch/root/html/TTree.html#TTree:Draw@2

Ndecay Process

1 K0
L → νe + π− + e+

2 K0
L → ν̄e + π+ + e−

3 K0
L → νµ + π− + µ+

4 K0
L → ν̄µ + π+ + µ−

5 K+ → νµ + µ+

6 K+ → νe + π0 + e+

7 K+ → νµ + π0 + µ+

8 K− → ν̄µ + µ−

9 K− → ν̄e + π0 + e−

10 K− → ν̄µ + π0 + µ−

11 µ+ → ν̄µ + νe + e+

12 µ− → ν + ν̄e + e−

13 π+ → νµ + µ+

14 π− → ν̄µ + µ−

999 Other

Code Material

5 Beryllium
6 Carbon
9 Aluminum
10 Iron
11 Slab Steel
12 Blu Steel
15 Air
16 Vacuum
17 Concrete
18 Target
19 Rebar Concrete
20 Shotcrete
21 Variable Density Aluminum
22 Variable Density Steel
23 1018 Steel
24 A500 Steel
25 Water
26 M1018 Steel
28 Decay Pipe Vacuum
31 CT852

Table 11: The decay codes stored in ndecay and material codes as defined by Gnumi
and used in the fluxfiles, old and current.

31

	Statement of Purpose
	Primary Ntuple
	general characterisics
	general entry info
	fixed decays
	decay data
	parent data
	ancestor data
	volume trajectory data
	proposed primary ntuple additions and metadata

	Defining the TTree
	flugg
	g4numi and variants

	Proposal
	dk2nu.h
	dkmeta.h

	Example test program for filling
	readlocations.C
	calclocweights.C
	example input location file: locfile.txt
	output when running test script

	Example use of the tree in a root session
	Auxillary numbering schemes

